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Abstract
The absorption of fast quasi-transverse modes during anharmonic scattering processes in cubic
crystals with positive (Ge, Si, diamond and InSb) or negative (KCl and CaF2) anisotropies of
the second-order elastic moduli is studied. Mechanisms underlying the relaxation of the fast
quasi-transverse mode by two fast (the FFF mechanism) or two slow (the FSS) modes are
discussed in the long-wavelength approximation. Angular dependences of the ultrasound
absorption for the FFF, FSS and Landau–Rumer relaxation mechanisms are analyzed in terms
of the anisotropic continuum model. The full absorption of the fast quasi-transverse mode is
determined. The problem of the scattering of collinear and noncollinear phonons in cubic
crystals and their role in the ultrasound absorption of the fast quasi-transverse modes is
considered. It is shown that the FFF and FSS relaxation mechanisms are due to the cubic
anisotropy of the crystals, leading to the interaction between noncollinear phonons. In crystals
with a considerable anisotropy of the elastic energy (InSb and KCl), the total contribution of the
FFF and FSS relaxation mechanisms to the full absorption is one to two orders of magnitude
larger than the contribution from the Landau–Rumer mechanism, depending on the direction.
Much of the dominance of the former relaxation mechanisms over the Landau–Rumer
mechanism is explained by second-order elastic moduli. The role of the Landau–Rumer
mechanism in ultrasound absorption may be considerable in cubic crystals with a smaller
anisotropy of the elastic energy. It is demonstrated that when anharmonic scattering processes
play the dominant role, the inclusion of one of the relaxation mechanisms (the Landau–Rumer
mechanism or the FFF or FSS mechanisms of relaxation) is insufficient for the quantitative
description of the anisotropy of the full absorption of the fast quasi-transverse modes in cubic
crystals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The absorption of quasi-transverse ultrasound during anhar-
monic scattering processes in cubic crystals with a positive
(Ge, Si, diamond and InSb) or a negative (KCl and NaCl)
anisotropy of the second-order elastic moduli was studied in

our earlier works [1, 2]. The angular dependences of the
absorptions for the Landau–Rumer relaxation mechanism [3],
according to which the merging of a transverse and a longi-
tudinal phonon produces a longitudinal phonon (T + L → L),
were analyzed in [1]. The relaxation mechanisms of the slow
quasi-transverse modes by two slow (the SSS mechanism) or
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two fast (the SFF mechanism) modes were analyzed [2] in
the long-wavelength approximation h̄ωλq � kBT (T being
the temperature and ωλq the frequency of a phonon with a
wavevector q and a polarization λ). It was shown [2] that
at sufficiently low temperatures these relaxation mechanisms
can result in functional dependences of the absorption of the
slow long-wavelength quasi-transverse modes in a form similar
to that for the Landau–Rumer mechanism [3], i.e. αTTT ≈
qT 4, and can compete with this mechanism. In accor-
dance with the views established in the literature [1–7], the
Landau–Rumer mechanism [3] is the main one for transverse
phonons in normal three-phonon scattering processes. This
relaxation mechanism was treated as the main mechanism
for transverse thermal phonons in calculations of the lattice
thermal conductivity [8–11]. However, our analysis [2]
demonstrated that in crystals with a considerable anisotropy
of the elastic energy (Ge, Si, InSb, KCl and NaCl) the total
contribution from the SSS and SFF relaxation mechanisms
to the ultrasound absorption is several times or one to two
orders of magnitude larger than the contribution from the
Landau–Rumer mechanism, depending on the direction. The
dominance of the SSS and SFF relaxation mechanisms over
the Landau–Rumer mechanism is explained, to a large extent,
by the second-order elastic moduli. The role of the Landau–
Rumer mechanism in ultrasound absorption is considerable
in diamond crystals with a smaller anisotropy of the elastic
energy. It has been shown that the SSS and SFF relaxation
mechanisms are due to the cubic anisotropy of the crystals
leading to the interaction of noncollinear phonons. Calculation
of the ultrasound absorption for the SSS, SFF and Landau–
Rumer relaxation mechanisms allowed us to determinate the
full absorptions of slow quasi-transverse modes [2]. It was
shown that other variants of the slow quasi-transverse mode
relaxation, except those considered in [2], leading to the
dependence of the Landau–Rumer type are unavailable.

The ultrasound absorption for anharmonic relaxation
processes involving three transverse phonons was studied
in [12–14]. However, it was shown [2] that the approximations
used in [12–14] are inadequate for cubic crystals. Firstly, three-
phonon scattering processes are calculated disregarding the
influence of the cubic anisotropy on the phonon polarization:
vibrational modes are assumed to be purely transverse modes
as in isotropic media. In this case, the procedure used
for averaging over the polarization vector directions in the
matrix element is not correct for cubic crystals. Secondly,
the ultrasound absorption is calculated for all symmetric
directions, but the form of the conservation law adopted by the
researchers allows the correct analysis of the [001] direction
only. It is known [4, 15, 16] that quasi-longitudinal or
quasi-transverse vibrations propagate in cubic crystals, while
pure modes propagate only in symmetric directions such as
[100], [110] and [111]. The analysis of the spectrum and the
polarization of vibrational branches [16] demonstrated that the
contribution of the transverse component to quasi-longitudinal
vibrations in cubic crystals is small and can be neglected.
Conversely, the contribution of the longitudinal components to
the quasi-transverse modes is not small, and the longitudinal
component of these modes should be taken into account in the

relaxation rates of quasi-transverse phonons when averaging
over the polarization vectors. Thus, the approximations used
in [12–14] can lead to large errors in calculating the relaxation
rate of transverse phonons. In the present study the effect of
cubic anisotropy on the spectrum and polarization of phonons
is taken into account exactly in the anisotropic continuum
model. The anisotropic continuum model is a convenient
approximation for solving such problems [17, 18]. In this
model the harmonic energy of cubic crystals is expressed as
three second-order elastic moduli, whereas the anharmonic
energy is treated in terms of six third-order elastic moduli.
It should be noted that, for a considerable number of cubic
crystals, the second- and third-order elastic moduli have been
determined experimentally. Therefore, the phonon relaxation
rates calculated in the framework of this model provide a
reliable basis for the interpretation of experimental data on the
ultrasonic absorption and phonon transport in cubic crystals.
It should be noted that the anisotropy of the spectrum and
the presence of degeneracy points in vibrational modes of
transverse phonons lead to a new relaxation mechanism of
the phonons in some anharmonic processes of scattering in
cubic crystals as compared to isotropic media [19–21]. For
example, the Herring mechanism [19], in which the fusion
of a longitudinal phonon with a slow (ST) transverse phonon
generates a fast (FT) transverse phonon, becomes possible.
A new mechanism of transverse phonon relaxation in cubic
crystals, according to which the fusion of a transverse phonon
(slow or fast) with a slow transverse phonon generates a
fast transverse phonon, has been investigated in [21]. This
mechanism is similar to the Herring relaxation mechanism for
longitudinal phonons [19] and can be referred to as the Herring
mechanism for transverse phonons. These mechanisms are
absent in isotropic media, because the transverse modes
in them are degenerate. A new relaxation mechanism of
transverse phonons [21], like the Herring mechanism for
longitudinal phonons [19], leads to a dependence of the long-
wavelength ultrasound absorption on the wavevector q and
temperature T in the form αTTT ∼ αLTT ∼ q2T 3. As a rule, this
dependence appears to be less effective in the long-wavelength
limit than dependences of the Landau–Rumer type: αλTTT ∼
qT 4. It contains an additional small parameter (h̄ωλq/kBT ) �
1 as compared to the Landau–Rumer mechanism.

In this study we restricted our analysis to the long-
wavelength approximation and considered all anharmonic
mechanisms responsible for relaxation of fast quasi-transverse
modes and leading to a Landau–Rumer-type linear dependence
of the ultrasound absorption on the wavevector. The analysis
demonstrated that, apart from the Landau–Rumer mechanism,
these relaxation processes involve relaxation of the fast quasi-
transverse mode by two fast (the FFF mechanism) or two
slow (the FSS mechanism) modes. Then it was possible
to determine the total relaxation rate of fast quasi-transverse
phonons in cubic crystals with positive (Ge, Si, diamond and
InSb) and negative (KCl and CaF2) anisotropies of the second-
order elastic moduli.

The estimates [4–7] showed that anharmonic relaxation
processes involving three transverse phonons in isotropic
media are ineffective. Firstly, transverse modes are degenerate
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in the case of isotropic media and only collinear phonons
can participate in these relaxation mechanisms. Secondly, as
was shown in [22, 23], the matrix element of this interaction
and, correspondingly, the relaxation rates and the ultrasound
absorption of transverse phonons turn to zero. In what
follows it will be shown that the use of the isotropic medium
approximation [3–11, 18, 22, 23] for evaluating the probability
of different scattering processes is inadequate for crystals
of germanium, silicon, diamond and other semiconductor
compounds, which have a cubic symmetry with a significant
anisotropy of both harmonic and anharmonic energies. Firstly,
the energy conservation law for the FSS and FFF relaxation
mechanisms permits the interaction of both collinear and
noncollinear phonons. Secondly, the analysis of the cubic
anisotropy of the harmonic and anharmonic energies of
the crystals demonstrated that the matrix element for the
scattering of collinear phonons via the FFF and FSS relaxation
mechanisms is nonzero only when the fast FT mode is a quasi-
transverse mode whose longitudinal component is nonzero.
The matrix element is zero if the fast FT mode is a purely
transverse mode. Thus, the longitudinal component to the
quasi-transverse modes should be considered when one deals
with the ultrasound absorption of fast FT modes in cubic
crystals.

In what follows we shall discuss in detail the problem of
the scattering of collinear and noncollinear phonons in cubic
crystals with positive (Ge, Si, diamond) or negative (KCl,
CaF2) anisotropies of the second-order elastic moduli and their
role in the ultrasound absorption of fast FT modes. The
contributions of the FFF and FSS relaxation mechanisms to the
ultrasound absorption will be compared with results obtained
for the Landau–Rumer mechanism [1] and the full absorption
of fast quasi-transverse modes will be determined. It will
be demonstrated that other variants of the relaxation of fast
quasi-transverse modes leading to dependences of the Landau–
Rumer type are unavailable. Unlike in [12–14], we shall
examine angular dependences of the ultrasound absorption for
the two most important cases: (1) the wavevectors in the plane
of the cube face and (2) the wavevectors in the diagonal plane.
Then it will be possible to determine the directions in which
the absorption of fast quasi-transverse modes is maximum and
minimum.

2. Absorption of fast quasi-transverse modes in
anharmonic scattering processes in cubic crystals

Let us consider the long-wave quasi-transverse ultrasound
absorption h̄ωλq � kBT for which the Landau–Rumer regime
is realized at sufficiently low temperatures if the inequality
ωλqτ

λ(q, T ) � 1 is fulfilled (τλ(q, T ) = 1/νλ(q, T ),
where T is the temperature and ωλq is the frequency of a
phonon with a wavevector q and a polarization λ). If the
above-mentioned inequalities are fulfilled, the ultrasonic wave
absorption αλ(q, T )with a wavevector q and a polarization λ is
proportional to the full relaxation rate of phonons of the given
polarization νλ(q, T ) (see, e.g., [2, 4, 7]):

αλ(q, T ) = 4.34νλ(q, T )

Sλ(q)
(dB cm−1), (1)

where Sλ(q) = Sλ(θ, ϕ) is the phonon phase velocity,
which depends on the angular variables θ and ϕ of the
vector q . In what follows we shall only consider the
intervals of temperatures and wavevectors q , over which
these inequalities hold. In the case under consideration the
dominant contribution to the volume absorption of ultrasonic
waves is due to the scattering by defects, including the
isotopic scattering and normal processes of the phonon–
phonon scattering (see, e.g., [4–7, 24]). Experimental studies
of the ultrasound absorption [4, 24] demonstrated that the
inequality ωλqτ

λ(q, T ) � 1 is fulfilled at sufficiently low
temperatures. For example, it holds at temperatures below
50 K, 100 K and 300 K for germanium, silicon and diamond
crystals, respectively. In these temperature ranges, Umklapp
processes in phonon–phonon scattering for the long-wave
ultrasound absorption are negligible. In the opposite limit case
ωλqτ

λ(q, T ) � 1, which takes place at higher temperatures, the
Akhiezer mechanism of attenuation is dominant [25]. In this
case, phonons can be considered to be quasiparticles moving
in the smoothly varying field of a sonic wave and Umklapp
processes in phonon–phonon scattering should be taken into
account [4–7]. The scattering by defects is considered in [1].
The scattering processes TTL (T1 + T2 → L3) considered
in [22, 23] for the isotropic medium approximation may be
effective for the thermal and high-frequency phonons. As
shown by Maris [7], this relaxation mechanisms appears to be
less effective in the long-wavelength limit than dependences of
the Landau–Rumer type: αλTTT ∼ qT 4. It contains additional
small parameter (h̄ωλq/kBT )3 � 1 as compared to the
Landau–Rumer mechanism. Here we shall restrict ourselves
to the analysis of anharmonic processes of scattering which
can result in functional dependences of the absorption of the
upper vibrational modes in the long-wavelength approximation
in a form similar to that for the Landau–Rumer mechanism.
These variants of the relaxation of the fast transverse phonons
in cubic crystals are the following processes of the merging of
two transverse phonons, which is followed by the formation of
a transverse phonon:

(1) FT1 + FT2 → FT3, ωt1
q1

= ωt1
q3

− ωt1
q2
,

(2) FT1 + ST2 → ST3, ωt1
q1

= ωt2
q3

− ωt2
q2
.

(2)

The processes (1) involve three fast quasi-transverse phonons
belonging to the upper vibrational branch (FT, λ = t1). In
the processes (2) the fast transverse phonons interact with
two slow quasi-transverse phonons belonging to the lower
vibrational branch (ST, λ = t2). It has already been noted
that collinear phonons can only participate in the processes (1)
in isotropic media [4–7]. Processes like (1) can take place in
isotropic media if the damping of phonon states is considered.
The correct analysis of the effect of the damping of phonon
states in the TTT mechanisms requires finding the total
relaxation frequency of transverse thermal phonons, which is
determined by all relaxation processes. The analysis of this
mechanism [7] for isotropic media taking into account the
damping of phonon states gives the wavevector-independent
absorption, i.e. αλTTT ∼ q0T 4ν(T ). In contrast, we shall show
that in the case of the FFF mechanism (the processes (1)) the
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energy conservation law is strictly fulfilled for noncollinear
phonons too. They give dependences of the long-wavelength
ultrasound absorption of the same form as those for the
Landau–Rumer mechanism, i.e. αFFF ∼ qT 4. Processes
like (2) (the FSS mechanism) are analogous to processes of the
relaxation of transverse phonons in the case of the Landau–
Rumer mechanism. They give dependences of the long-
wavelength ultrasound absorption of the form αFSS ∼ qT 4,
and can compete with the Landau–Rumer mechanism [2].
The energy of a scattered quasi-transverse phonon in the FSS
mechanism equals the difference of the energies of thermal
phonons belonging to one and the same transverse vibrational
branch. It should be noted that this mechanism is impossible in
isotropic media because the transverse branches are degenerate
and the phonon spectrum is isotropic. Therefore, the higher
the cubic anisotropy more efficient the FSS and FFF relaxation
mechanisms are. In what follows we shall present calculations
of the absorption of fast quasi-transverse modes for the
processes (1) and (2) in cubic crystals. Then it will be possible
to determine the full absorption of fast quasi-transverse modes
in the long-wavelength approximation. Other variants of the
relaxation of FT modes leading to a dependence of the Landau–
Rumer type are absent. It will be shown that in many cubic
crystals the FSS and FFF relaxation mechanisms makes the
predominant contribution to the full absorption of the fast
quasi-transverse mode.

The initial expression for the relaxation rate of phonons
with a polarization λ has the form [9] (see also [4, 7, 18]):

νphN (q1, λ) = π h̄4

(2ρkBT )3
1

V

∑

q2q3
λ2,λ3

sh( z1
2 ) · δq1+q2+q3,0

z1z2z3sh( z2
2 )sh( z3

2 )

×
∣∣∣∣V

λλ2λ3
q1q2q3

∣∣∣∣
2

{2δ(ωλq1
+ ωλ2

q2
− ωλ3

q3
)

+ δ(ωλq1
− ωλ2

q2
− ωλ3

q3
)}. (3)

Here ρ is the density, V is the normalization volume, T is the
temperature, the polarization λ takes two values t1 and t2, and
zn = h̄ωλn

qn/kBT . In expression (3) we shall only consider
the first term in the braces, in which the merging of two
transverse phonons produces a transverse phonon. Processes
in the decomposition of a transverse phonon to two transverse
phonons are not discussed since they can be considerable
for thermal and high-frequency phonons. The expression
for the matrix element V λ1λ2λ3

q1q2q3
, determining the probabilities

of various three-phonon scattering processes in terms of the
elastic moduli of the second and third order, was obtained
in [26]:

V λ1λ2λ3
q1q2q3

= c̃111

∑

i

e1i q1ie2i q2i e3i q3i + c123(e1q1)(e2q2)(e3q3)

+ c̃112

∑

i

[(e1q1)e2i q2ie3i q3i + (e2q2)e1i q1ie3i q3i

+ (e3q3)e1i q1ie2i q2i ] + c144[(e1q1)(e2q3)(e3q2)

+ (e2q2)(e1q3)(e3q1)+ (e3q3)(e1q2)(e2q1)]
+ (c12 + c144)[(e1q1)(e2e3)(q3q2)+ (e2q2)(e1e3)(q3q1)

+ (e3q3)(e1e2)(q1q2)] + c456[(e1q3)(e2q1)(e3q2)

+ (e1q2)(e2q3)(e3q1)] + (c44 + c456)[(e1q2)(q1q3)(e2e3)

+ (e2q3)(q1q2)(e1e3)+ (e3q1)(q2q3)(e1e2)

+ (e1q3)(q1q2)(e2e3)+ (e2q1)(q2q3)(e1e3)

+ (e3q2)(q1q3)(e1e2)] + c̃155

∑

i

{e1ie2i e3i(q1i(q2q3)

+ q2i(q1q3)+ q3i(q1q2))+ e1i q1i[e2i q3i(e3q2)

+ e3i q2i(e2q3)] + e2i q2i[e1i q3i(e3q1)+ e3i q1i(e1q3)]
+ e3i q3i [e1i q2i(e2q1)+ e2i q1i(e1q2)]} + [c̃155 −�C]
×

∑

i

q1i q2iq3i [e1i(e2e3)+ e2i(e1e3)+ e3i(e1e2)], (4)

where

c̃112 = c112 − c123 − 2c144,

c̃155 = c155 − c144 − 2c456

c̃111 = c111 − 3c112 + 2c123 + 12c144 − 12c155 + 16c456,

�C = c12 + 2c44 − c11.

(5)
Here ci j and ci jk are the thermodynamic moduli of second and
third order in the normalization introduced by Brugger [27]
and e1,2,3 stands for polarization vectors. The contributions
containing the elastic moduli c̃111, c̃112, c̃155,�C are typical of
cubic crystals and distinguish them from the isotropic medium.
Equality to zero of these moduli provides a transition to the
isotropic medium model. In this case one can obtain the
expression for the anharmonic energy of the isotropic medium
obtained by Tucker and Rampton (see formula (4.22) of [5]).

The relaxation rate of phonons for the TTT relaxation
mechanisms is calculated in the anisotropic continuum model.
First of all, we determine the spectrum of phonons with a
polarization λ and a wavevector much smaller than the Debye
wavevector qd in this model:

ωλq = Sλ(θ, ϕ)q. (6)

The spectrum anisotropy is determined by the anisotropy of the
phase velocity Sλ(θ, ϕ), which depends on the angles θ and ϕ
of the vector q. In the system of coordinates connected with
the cube edges we have [16]:

Sλ(θ, ϕ) =
√

c44

ρ

(
1 + c11 − c44

c44

(
1

3
+ Zλ

))1/2

,

Zt1,t2 = 2

3
r cos

(
Q

3
∓ 2π

3

)
, Q = arccos p,

p =
{

1 + 4.5(k2 − 1)ξ + 13.5η(k − 1)2(2k + 1)

r 3

}
,

r =
√

1 + 3(k2 − 1)ξ, k = c12 + c44

c11 − c44

(7)

where ξ = n2
1n2

2 + n2
1n2

3 + n2
2n2

3 and η = n2
1n2

2n2
3 are cubic

harmonics and n = q/q = {sin θ cos ϕ, sin θ sinϕ, cos θ} is a
unit wavevector of a phonon. The indices t1 and t2 correspond
to the ‘fast’ (the upper) and the ‘slow’ (the lower) transverse
vibrational modes.

In the exact expression for the matrix element of (4)
we will take into account the terms that are linear
in longitudinal components of quasi-transverse vibrations,
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while the terms proportional to quadratic combinations of
(e1n1), (e2n2), (e3n3) will be neglected. The error of this
approximation is about 1% in Ge, InSb, GaSb and GaAs,
and less than 1% in Si and diamond. Then for the square
of the matrix element in the long-wavelength approximation
(q2

∼= q3, n2
∼= n3 and e2

∼= e3) we have for the relaxation
processes (1) and (2):

I λλ2λ2
TTT (θ1, ϕ1, θ2, ϕ2) =

(
2

q1q3
2

q3

)−2∣∣∣∣V
λλ2λ3

q1q2q3

∣∣∣∣
2

= 1

4

{
c̃111

×
∑

i

e1i e
2
2i n1i n

2
2i + c̃112

∑

i

[2e1ie2i n1i n2i(e2n2)

+ e2
2i n

2
2i (e1n1)] + c̃155

∑

i

[e1ie
2
2i(n1i + 2n2i cos θ12)

+ 2e1i e2i n2i [n1i(e2n2)+ n2i(e2n1)] + 2e2
2i n1i n2i(e1n2)]

+ (c̃155 −�c)
∑

i

[n1i n
2
2i (e1i + 2e2i(e1e2))]

+ 2(c144 + c456)(e2n2)(e2n1)(e1n2)+ (c12 + c144)

× [(e1n1)+ 2(e1e2)(e2n2) cos θ12] + 2(c44 + c456)

× [(e1n2) cos θ12 + (e1e2)[(e2n1)+ (e2n2) cos θ12]]
}2

,

cos θ12 = (n1n2) = sin θ1 cos(ϕ2 − ϕ1) sin θ2 + cos θ1 cos θ2.

(8)

Here θ1, ϕ1 and θ2, ϕ2 are the angular variables of the vectors
q1 and q2. The polarization vectors of phonons in different
vibrational branches in the formula (8) are defined by the
expressions [16]

eλj = 1

Aλ

{
n j

ψλj

}
Aλ = ±

√√√√∑

j

n2
j

(ψλj )
2

(eλn) = 1

Aλ

∑

j

n2
j

ψλj
, ψλj = 1

3
+ Zλ + (k − 1)n2

j .

(9)

It is seen from (7) and (9) that just the parameter k − 1
characterizes the influence of the elastic anisotropy on the
spectrum and polarization vectors of vibrational modes in
cubic crystals. When changing to the isotropic medium model,
which is discussed in [22, 23], the terms containing the third-
order elastic moduli c̃111, c̃155, �C and (e2n2), (e1n1), vanish
and, hence, only the last term remains in (8). It determines the
matrix element for the isotropic medium:

I λλ2λ2
TTT (θ1, ϕ1, θ2, ϕ2) = 1

4 {2(c44 + c456)[(e1n2) cos θ12

+ (e1e2)(e2n1)]}2. (10)

The result obtained in [22, 23] becomes obvious from this
expression. For the scattering of collinear phonons n1 =
n2 and the matrix element identically turns to zero because
isotropic media pass pure modes for which (e2n2) = (e1n1) =
0. Thus, the square of the matrix element for the scattering
of collinear phonons in isotropic media identically turns to
zero in an arbitrary direction of the wavevector of a phonon.
Therefore, the TTT relaxation mechanisms in isotropic media
can contribute to ultrasound absorption only because of the
small-angle scattering of phonons if the damping of phonon
states is considered.

The situation is considerably different for cubic crystals.
The consideration of the cubic anisotropy of the harmonic
and anharmonic energies of the crystals leads to nonzero
values of the matrix element (8) for the scattering of collinear
phonons via the FFF and FSS relaxation mechanisms only
when the fast FT mode is a quasi-transverse mode whose
longitudinal component is nonzero. The square of the matrix
element is zero if the fast FT mode is a purely transverse
mode. For example, in all the crystals of the first group the
fast FT mode for the wavevectors in the cube face plane is
a purely transverse mode with the polarization vector being
perpendicular to the cube face under consideration (see [16]).
It is easy to check that for this mode e1i n1i = 0 at all i
and, therefore, expression (8) for the FFF and FSS relaxation
mechanisms becomes zero at all values of the angle θ1 for
the scattering of collinear phonons (n1 = n2). Conversely,
in all the crystals of the second group (including KCl and
CaF2) the fast FT mode for the wavevectors in the cube
face plane is a quasi-transverse mode with the polarization
vector being in the cube face plane (see [16]). Therefore, the
squares of the matrix element for the scattering of collinear
phonons in the FFF (I t1t1t1

TTT (θ1, 0, θ1, 0) ≡ IFFF(θ1, 0)) and FSS
(I t1t2t2

TTT (θ1, 0, θ1, 0) = IFSS(θ1, 0)) relaxation mechanisms are
nonzero at all values of the angle θ1. As can be seen from
figures 1(a) and (b), they turn to zero in the [001] and [101]
directions in all the crystals of the second group. This is
because the fast FT mode is a purely transverse mode in these
directions.

In the case of the wavevectors lying in the diagonal
plane (ϕ1 = π/4), the square of the matrix element
I t1t1t1
TTT (θ1, π/4, θ1, π/4) ≡ IFFF(θ1, π/4) is nonzero in the

crystals of the first group (Ge, Si, diamond and InSb) at the
angles θ111 < θ1 < π − θ111 (θ111 being the angle between the
z-axis and the [111] direction) (see figure 1(c)). In this case, the
fast FT mode is a quasi-transverse mode with the polarization
vector in the diagonal plane. At the angles 0 < θ1 < θ111 and
π − θ111 < θ1 < π the fast FT mode is a pure mode with the
polarization vector being perpendicular to the diagonal plane
and the function IFFF(θ1, π/4) turns to zero (see figure 1(c)).
In the crystals of the second group the square of the matrix
element IFFF(θ1, π/4) is nonzero at the angles 0 < θ1 < θ111

and π − θ111 < θ1 < π (see figure 1(c)) (the mode t1 is a
quasi-transverse mode with the polarization vector lying in the
diagonal plane) and is zero at the angles θ111 < θ1 < π − θ111

(the mode t1 is a pure mode with the polarization vector being
perpendicular to the diagonal plane) (see [16]). The same
situation takes place for the FSS relaxation mechanism. With
the wavevectors in the diagonal plane (ϕ1 = π/4), the square
of the matrix element I t1t2t2

TTT (θ1, π/4, θ1, π/4) = IFSS(θ1, π/4)
for the FSS relaxation mechanism is nonzero at the angles
θ111 < θ1 < π−θ111 in the crystals of the first group and at the
angles 0 < θ1 < θ111 and π − θ111 < θ1 < π in the crystals
of the second group (see figure 1(d)). The above analysis
suggests that the angular dependences of the square of the
matrix element are qualitatively different for the scattering of
collinear phonons in cubic crystals with positive and negative
anisotropies of the elastic energy.

Let us consider the energy conservation law in the FSS
and FFF relaxation mechanisms. The equality of the function

5
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Figure 1. Angular dependences of the square of the matrix element during the scattering of collinear phonons in the FFF ((a), (c)) and
FSS ((b), (d)) relaxation mechanisms for sound wavevectors in the cube face plane ((a), (b)) in KCl (curve 1) and CaF2 (curve 2) and for sound
wavevectors in the diagonal plane ((c), (d)) in Ge (curve 3), Si (curve 4), InSb (curve 5), diamond (curve 6), KCl (curve 1) and CaF2 (curve 2).

�λλ2 to zero determines the energy conservation law for the
TTT mechanisms:

�λλ2 = (ωλq1
+ ωλ2

q2
− ω

λ2
|q1+q2|) = ωλq1

×
[

1 − ω
λ2
|q1+q2| − ωλ2

q2

ωλq1

]
. (11)

For an arbitrary direction of the phonon wavevectors q2 and q3

at q1 � q2, q3 this function can be expressed in terms of the
group velocity of phonons V λ2

g2 :

�λλ2 = ωλq1
Wλλ2(θ1, ϕ1, θ2, ϕ2),

Wλλ2(θ1, ϕ1, θ2, ϕ2) = 1 − 1

Sλ(θ1, ϕ1)
(V λ2

g2 (θ2, ϕ2) · n1).

(12)
The group velocity of phonons can be written in the form

V λ2
g2 (θ2, ϕ2) = S(λ2

θ2, ϕ2){n2 + Sλ2
θ2

eθ2 + Sλ2
ϕ2

eϕ2}, (13)

where

n2 = {sin θ2 cos ϕ2, sin θ2 sinϕ2, cos θ2},

eθ2 = {cos θ2 cosϕ2, cos θ2 sinϕ2,− sin θ2},

eϕ2 = {− sinϕ2, cos ϕ2, 0},

Sλ2
θ2

= 1

Sλ2

∂Sλ2

∂θ2
= ∂

∂θ2
ln Sλ2 , Sλ2

ϕ2
= 1

sin θ2

1

Sλ2

∂Sλ2

∂ϕ2
.

The functions Sλθ (θ, ϕ) and Sλϕ(θ, ϕ) are determined by the
following expressions:

Sλθ (θ, ϕ) = 1

Sλ

∂Sλ
∂θ

= 1

Sλ

(
∂Sλ
∂ξ

∂ξ

∂θ
+ ∂Sλ
∂η

∂η

∂θ

)
,

Sλϕ(θ, ϕ) = 1

sin θ · Sλ

(
∂Sλ
∂ξ

∂ξ

∂ϕ
+ ∂Sλ
∂η

∂η

∂ϕ

)
(14)

1

Sλ

∂Sλ
∂ξ

=
[(

St
100

Sλ

)2 c11 − c44

2c44
Zλ

]
1.5(k2 − 1)

r 2

×
{

1 − 1.5(k2 − 1)ξ + 13.5(k − 1)2(1 + 2k)

(1 − q2)1/2(r)3

× tg

(
Q

3
∓ 2π

3

)}

1

Sλ

∂Sλ
∂η

=
[(

St
100

Sλ

)2 c11 − c44

2c44
Zλ

]
4.5(k − 1)2(1 + 2k)

(1 − q2)1/2(r)3

× tg

(
Q

3
∓ 2π

3

)
, St

100 =
(

c44

ρ

)1/2

,
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∂ξ

∂θ
= sin 2θ [cos 2θ + 0.5(sin θ)2(sin 2ϕ)2],

∂ξ

∂ϕ
= 0.5(sin θ)4 sin 4ϕ,

∂η

∂θ
= 1

4
sin 2θ(sin θ)2[3(cos θ)2 − 1] sin2 2ϕ,

∂η

∂ϕ
= 1

2
(sin θ)4(cos θ)2 sin 4ϕ.

The expressions for Zλ, q and r are given by formulae (7). It is
easy to verify that the vectors n2, eθ2 and eϕ2 form a mutually
orthogonal system of unit vectors. In an arbitrary direction of
the unit wavevectors of phonons n1 and n2 we have

Wλλ2(θ1, ϕ1, θ2, ϕ2) = 1 − Sλ2(θ2, ϕ2)

Sλ(θ1, ϕ1)
{cos θ12 + Sλ2

θ2
(θ2, ϕ2)

× [sin θ1 cos θ2 cos(ϕ2 − ϕ1)− sin θ2 cos θ1]
+ Sλ2

ϕ2
(θ2, ϕ2)[sin θ1 sin(ϕ1 − ϕ2)]}. (15)

In the [001] direction (θ1 = 0, ϕ1 = 0) it follows from (15)
that

Wλλ2(0, 0, θ2, ϕ2) = 1 − Sλ2(θ2, ϕ2)[cos θ2 − Sλ2
θ2

sin θ2]/St
100.

(16)
Expression (16) is used in [12–14] for calculating the energy
conservation contours in all symmetric directions ([001], [101]
and [111]). However, it holds for the [001] direction only. For
example, in the [101] direction (θ1 = π/4, ϕ1 = 0) it follows
from (15) that

Wλλ2(θ1, ϕ1, θ2, ϕ2) = 1 − Sλ2(θ2, ϕ2)√
2Sλ(θ1, ϕ1)

{sin θ2 cos ϕ2

+ cos θ2 + Sλ2
θ2
(θ2, ϕ2)(cos θ2 cos ϕ2 − sin θ2)

− Sλ2
ϕ2

sin ϕ2}. (17)

Obviously, expressions (16) and (17) for the function
Wλλ2(θ1, ϕ1, θ2, ϕ2) are considerably different. Its use for
the other symmetric directions, as was done in [12–14], is
erroneous. Therefore the analysis of the energy conservation
law and the ultrasound absorptions [12–14] in the [101] and
[111] directions is incorrect.

In the long-wavelength limit h̄ωλq � kBT (q1 � q2,
q3) at temperatures much lower than the Debye temperature
the integral over z2 in (3) is calculated exactly and for the
ultrasound absorption in the FFF (λ = t1 and λ2 = λ3 = t1)
and FSS (λ = t1 and λ2 = λ3 = t2) processes we have

αFTT(θ1, ϕ1, T ) = AFTTz1T 5, z1 = h̄ωt1
q1

kBT
,

AFTT = AFFF + AFSS = A0F JFTT(θ1, ϕ1) (dB cm−1K−5), (18)

JFTT(θ1, ϕ1) = JFFF(θ1, ϕ1)+ JFSS(θ1, ϕ1),

A0F = 4.34π3k5
B

15h̄4ρ3(St1(θ1, ϕ1))2(St
100)

8
, St

100 =
(

c44

ρ

)1/2

(19)

JFTT(θ1, ϕ1) =
∑

λ2

∫ 1

−1
dx

1

π

∫ 2π

0
dϕ2 δ(Fλλ2(θ1, ϕ1, θ2, ϕ2))

× I λλ2λ2
TTT (θ1, ϕ1, θ2, ϕ2)

(S̃λ2(θ2, ϕ2))8
, x = cos θ2 (20)

Fλλ2(θ1, ϕ1, θ2, ϕ2) = cos θ12 −
(

St1(θ1, ϕ1)

Sλ2(θ2, ϕ2)

− �λλ2(θ1, ϕ1, θ2, ϕ2)

)
,

S̃λ2(θ2, ϕ2) = Sλ2(θ2, ϕ2)

St
100

. (21)

The equality Fλλ2(θ1, ϕ1, θ2, ϕ2) = 0 determines the
energy conservation contours for the considered relax-
ation mechanisms. The quantities Fλλ2(θ1, ϕ1, θ2, ϕ2) and
�λλ2(θ1, ϕ1, θ2, ϕ2) introduced by us can be presented in terms
of the above-defined quantities Wλλ2(θ1, ϕ1, θ2, ϕ2) and the
group velocity of phonons in the form:

Fλλ2(θ1, ϕ1, θ2, ϕ2) = − Sλ1

Sλ2

Wλλ2(θ1, ϕ1, θ2, ϕ2)

�λλ2(θ1, ϕ1, θ2, ϕ2) = Sλ2
θ2
(eθ2 n1)+ Sλ2

ϕ2
(eϕ2n1)

= Sλ2
θ2
(θ2, ϕ2)[sin θ1 cos θ2 cos(ϕ2 − ϕ1)− sin θ2 cos θ1]

+ Sλ2
ϕ2
(θ2, ϕ2)[sin θ1 sin(ϕ2 − ϕ1)]. (22)

The use of the function Fλλ2(θ1, ϕ1, θ2, ϕ2) and �λλ2

(θ1, ϕ1, θ2, ϕ2) is convenient for study of the energy
conservation law in the FFF and FSS relaxation mechanisms
for the interaction of collinear and noncollinear phonons.

Consider the restrictions related to the energy conservation
law with respect to the scattering of collinear phonons in
cubic crystals. Notice that in isotropic media the spectrum
of transverse phonons is isotropic and the energy conservation
law allows the scattering of collinear phonons at an arbitrary
direction of the wavevector. For the scattering of collinear
phonons n1 = n2, and it follows from (22) that the function
�λλ2(θ1, ϕ1, θ1, ϕ1) identically turn to zero at an arbitrary
direction of the vector n1. Therefore the fulfilment of the
energy conservation law for these processes reduces to the
condition

Fλλ2(θ1, ϕ1, θ1, ϕ1) = 1 − Sλ(θ1, ϕ1)

Sλ2(θ1, ϕ1)
= 0. (23)

It is seen from (23) that for the FFF and SSS mechanisms the
polarizations of interacting phonons are equal (λ = λ2) and
the energy conservation law allows the scattering of collinear
phonons at all directions of the vector n1. For the FSS and
SFF mechanisms collinear phonons can be scattered in the
[001] and [111] directions only. However, in these directions
the square of the matrix element turn to zero and the FSS
and SFF relaxation processes cannot be efficient mechanisms
for ultrasound absorption. On the other hand, considering
damping of phonon states, the FFF and SSS relaxations of
collinear phonons can contribute to the ultrasound absorption
if the sound wave is quasi-transverse, i.e. its longitudinal
component is nonzero.

For calculating the integral J λFTT(θ1, ϕ1) in (20) it is
necessary first to find solutions to the equation

Fλλ2(θ1, ϕ1, x, ϕ2) = cos θ12 −
(

Sλ(θ1, ϕ1)

Sλ2(θ2, ϕ2)

− �λλ2(θ1, ϕ1, x, ϕ2)

)
= 0

for − 1 � x � 1, x = cos θ2 (24)

7
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Figure 2. (a) Dependences of the angle θ12 between the sound wavevector and a scattered phonon (θ2, ϕ2) on the angle ϕ2 according to
equation (24) in crystallographic directions like [001] (θ1 = 0, ϕ1 = 0): the FSS relaxation mechanism in Ge (curves 1, 5), Si (curves 2, 5),
InSb (curves 3, 5), KCl (curves 4, 5) and CaF2 (curve 5); the FFF relaxation mechanisms in Ge, Si and InSb crystals (curve 5), in KCl
(curves 4′, 4′′ and 5) and in CaF2 (curves 6 and 5); the FSS and FFF relaxation mechanisms in diamond crystals (curves 5). (b) Dependences
of the angle θ12 for the sound wavevectors in crystallographic directions like [101] (θ1 = π/4, ϕ1 = 0) on the angle ϕ2 according to
equation (24): the FFF relaxation mechanisms in Ge (curve 1), Si (curve 2), InSb (curve 3), KCl (curves 4 and 4′) and CaF2 (curves 5 and 5′).

and take the integral over x using the δ-function (in this case,
the roots of equation (24) x1 become functions of the angles
ϕ2, θ1, and ϕ1).

In the small neighborhood of x = x j the function
Fλλ2(θ1, ϕ1, x, ϕ2) can be written in the form

Fλλ2(θ1, ϕ1, x, ϕ2) =
∑

j

dFλλ2(θ1, ϕ1, x, ϕ2)

dx

∣∣∣∣
x=x j

(x − x j)

+ 1

2

∑

j

d2 Fλλ2(θ1, ϕ1, x, ϕ2)

dx2

∣∣∣∣
x=x j

(x − x j)
2 + · · · . (25)

In the absence of multiple roots the derivative
dFλλ2 (θ1,ϕ1,x,ϕ2)

dx |x=x j �= 0 and the expression for JFTT(θ1, ϕ1)

becomes

JFTT(θ1, ϕ1) =
∑

λ2, j

1

π

∫ 2π

0
dϕ2

I λλ2λ2
TTT (θ1, ϕ1, x j , ϕ2)

(S̃λ2(θ2, ϕ2))8|F (1)
j | ,

F (1)
j = dFλλ2(θ1, ϕ1, x, ϕ2)

dx

∣∣∣∣
x=x j (ϕ2,θ1,ϕ1)

.

(26)

If the derivative F (1)
j = 0, then for the integral JFTT(θ1, ϕ1) we

have

J λFTT(θ1, ϕ1) =
∑

λ2, j

2

π

∫ 2π

0
dϕ2

1

|F (2)
j |

× d

dx

{
I λλ2λ2
TTT (θ1, ϕ1, x j , ϕ2)

(S̃λ2(θ2, ϕ2))8

}∣∣∣∣
x=x j

,

F (2)
j = d2 Fλλ2(θ1, ϕ1, x, ϕ2)

dx2

∣∣∣∣
x=x j

. (27)

Obviously, if the cubic anisotropy is taken into account in
the energy conservation law, the procedure of deriving the
roots of equation (24) can only be solved numerically. It

is necessary to examine additionally the derivative of the
function

dFλλ2 (θ1,ϕ1,x,ϕ2)

dx |x=x j �= 0 and the case with multiple
roots. It should be noted that �λλ2 is important for the
relaxation processes FSS and SFF: it ensures the interaction of
noncollinear phonons in the FFF mechanism and considerably
extends the interval of the angles at which long-wavelength
phonons of the mode t1 can be scattered by thermal phonons of
the low vibrational modes in the FSS mechanism. According
to the estimates, in directions like [001] (θ1 = 0, ϕ1 = 0) and
[101] (θ1 = π/4, ϕ1 = 0) the maximum values of �t1t2 are as
large as 0.6, 0.45 and 0.17 in InSb, Ge and diamond crystals.
For the FFF mechanism the maximum value of �t1t1 proves
to be 1.5 times smaller: 0.4, 0.3 and 0.12 for InSb, Ge and
diamond crystals, respectively. This is due to a considerably
smaller anisotropy of the spectrum of the upper vibrational
mode in crystals of the first group. One might expect therefore
that in such elastically anisotropic crystals as Ge and InSb
(k = 1.8) the TTT mechanisms will be more significant than
in diamond (k = 1.4).

The numerical analysis of equation (24) shows that it also
possesses solutions for noncollinear phonons in the case of
the fast transverse mode for the FFF (λ1 = λ2 = t1) and
FSS (λ1 = t1 and λ2 = t2) relaxation processes. As can
be seen from figure 2(a), in directions like [001] (θ1 = 0,
ϕ1 = 0) two solutions exist for the FFF relaxation processes
in Ge, Si and InSb crystals: one solution corresponds to the
interaction of collinear phonons (θ12 = 0, figure 2(a), curves 5)
and the other to the interaction of noncollinear phonons
(figure 2(a), curves 1, 2 and 3). The solution corresponding
to the interaction of collinear phonons (figure 3(a), curves 5)
only exists for the FSS relaxation processes in these crystals.
In diamond and CaF2 crystals with a lower anisotropy of
the harmonic energy the FFF and FSS relaxation processes
in directions like [001] can only involve collinear phonons

8
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Figure 3. Angular dependences of the absorptions of the fast transverse mode in Ge (a), Si (b), InSb (c) and diamond (d) crystals with
wavevectors in the cube face plane (ϕ1 = 0): the FFF relaxation mechanism (curve 1), the FSS relaxation mechanism (curve 2), the
Landau–Rumer mechanism (curve 3), and the full quasi-transverse ultrasound absorption (curve 4).

(figure 2(a), curves 5). In KCl crystals, which are more
anisotropic, the energy conservation law permits the interaction
of both collinear (figure 2(a), curves 5) and noncollinear
(figure 2(a), curves 4, 4′ and 4′′) phonons. Three solutions
exist for each of the two relaxation mechanisms. In directions
like [101] (θ1 = π/4, ϕ1 = 0) the solutions corresponding to
the interaction of noncollinear phonons exist only for the FFF
mechanism and are absent for the FSS relaxation mechanism
in the crystals under study. It is seen from figure 2(b) that for
the FFF mechanism in Ge, Si and InSb crystals equation (24)
possesses two solutions corresponding to the scattering of
noncollinear phonons to the angles 0 < θ12 < 25 (curves 1,
2, 3). In KCl and CaF2 crystals four solutions corresponding
to the scattering of noncollinear phonons to the angles 0 <

θ12 < 25 exist for the FFF relaxation processes (see the inset
in figure 2(b), curves 4, 4′ and 4′′).

Computation of the ultrasound absorption by finding the
roots from the formulae (24)–(27) requires much machine

time. As shown in [1, 2], a simpler variant is available
for calculating the relaxation rates of phonons. This variant
eliminates the procedure of finding the roots of equation (24),
F(x, ϕ2, θ1, ϕ1) = 0, but requires calculating a double
integral J λTTT(θ1, ϕ1) instead of a single integral. It consists
in replacement of the δ-function in expression (20) by its
representation as a limiting process from the Lorentzian or
Gaussian function:

δ(F(x, ϕ2, θ1, ϕ1)) = 1

π
lim
ε→0

ε

(F(x, ϕ2, θ1, ϕ1))2 + ε2
,

δ(F(x, ϕ2, θ1, ϕ1)) = lim
ε→0

1

2
√
πε

× exp(−(F(x, ϕ2, θ1, ϕ1))
2/4ε). (28)

The numerical analysis demonstrates that both approximations
give the same result. The Gaussian approximation of the δ-
function in calculating the relaxation rates makes it possible to
reduce considerably the calculation time. It should be noted

9
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that the maximum values of the Lorentz peak are proportional
to ε−1, whereas those of the Gaussian peak are proportional
to ε−1/2; full width at half maximum (FWHM) of the Lorentz
peak is proportional to ε, whereas FWHM of the Gaussian peak
is proportional to ε1/2. Therefore, when calculation results
depend on the degree of damping, both approximations give the
same result if the parameter εL for calculation in the Lorentz
approximation is equal to the parameter ε2

G for calculation in
the Gaussian approximation.

It should be noted that the calculated values of the
ultrasound absorption for the scattering of noncollinear
phonons in the variant with the damping (28) are in agreement
with the exact calculations using the roots calculation
procedure from formulae (24)–(27). For example, the
calculated values of αλT L L(θ1, ϕ1) for the Landau–Rumer
mechanism in the variant with the damping (28) are in
agreement with the exact calculations to within the error, which
is not over 0.1% at ε = 10−4 [1]. The point is that the ratio
(St1/SL) for the Landau–Rumer mechanism is always less then
unity. The energy conservation law is fulfilled both in the
isotropic approximation and with the exact consideration of the
cubic anisotropy. With this mechanism, �LTT(θ1, ϕ1, θ2, ϕ2) is
a smooth function of the angles and equation (24) possesses
one or two solutions at different θ1 and ϕ1, while the intervals
of the angles ϕ2, over which roots are available, are sufficiently
large [1]. Unlike this case, the functions having alternating sign
�t1λ2(θ1, ϕ1, θ2, ϕ2) for the FFF and FSS mechanisms changes
abruptly with the angles θ2 and ϕ2 over some intervals of the
angles θ1 (ϕ1 = 0, π/4). The number of roots of equation (24)
is much larger than unity, while the intervals of the angles ϕ2,
over which some of the roots are available, are narrow. At
ϕ2 = π/4 and θ2 = θ111 the function �t1λ2(θ1, ϕ1, θ2, ϕ2)

has a finite discontinuity related to the point of intersection
between the spectra of quasi-transverse modes, while the
function F(x,ϕ2,θ1,ϕ1)

dx has an infinite discontinuity at this point.
Also, it turns to zero if multiple roots appear, leading to
formation of sharp peaks against a smooth dependence of the
ultrasound absorption. In these circumstances the numerical
integration of (25) using the roots calculation procedure gives
the functions αFFF(θ1, ϕ1) and αFSS(θ1, ϕ1) as a ‘comb’ over
some intervals of the angles θ1. Therefore the introduction of a
small, but finite, damping of the phonon states for the FFF and
FSS mechanisms is a necessary procedure.

The damping of phonon states always exists. In ideal
crystals the damping of phonon states is due to anharmonic
scattering processes. In imperfect crystals it is due to scattering
by defects and anharmonic scattering processes. According
to experimental studies [24, 28–30], anharmonic processes
make the dominant contribution to the ultrasound absorption
at T > 10 K. When T ∼ 100 K and ω ∼ 1 GHz,
the parameter ωλqτ2 ≈ 1, while at higher temperatures the
Landau–Rumer regime ωλqτ2 < 1 is replaced by the Akhiezer
regime ωλqτ2 > 1 [25]. In this case, the frequency and
temperature dependences of the ultrasound absorptions change
qualitatively. The estimates made from measurements of the
ultrasound absorptions [12–14] show that in the anharmonic
scattering regime the values of the parameter ε ≈ (ωλqτ2)

−1 lie
in the range 10−3–10−1. Therefore the physically reasonable

limit of the parameter ε ≈ (ωλqτ2)
−1 for the FFF and FSS

mechanisms is 10−6, when the δ-function is calculated as
the Lorentz approximation (corresponding to εG = 10−12

in the case of the Gaussian approximation). The values of
αFSS(θ1, ϕ1) calculated in this variant for the FSS mechanism
agree with those calculated by formulae (24)–(27) to within
the error, which is not over 5% for the SFF mechanism; the
maximum error is not over 10% for the FFF mechanism.
There are two exceptions to this rule for the FFF and FSS
mechanisms. Firstly, for scattering of collinear phonons in
the [001] direction. In this case, the square of the matrix
element (8) identically turns to zero. Therefore, if the
energy conservation law is fulfilled exactly, the absorptions
αFFF(θ1, ϕ1) and αFSS(θ1, ϕ1) turn to zero provided solutions
corresponding to the interaction of noncollinear phonons are
unavailable. However, the consideration of the small, but
finite, damping leads to negligibly small, but finite, values
of these quantities because of the small-angle scattering of
phonons. Secondly, our study of the absorption of fast
quasi-transverse modes by the FFF mechanism revealed a
new interesting feature in the crystals of the first group.
Since the spectral anisotropy of fast quasi-transverse modes
proves to be smaller than that of slow quasi-transverse modes,
then, for the scattering of collinear phonons (1–10−4 �
| cos θ12| � 1) in some compounds under study, the function
Ft1t1(θ1, ϕ1, x, ϕ2) does not turn to zero over a narrow interval
of the angles θ2 and ϕ2, which are close to θ1 and ϕ1, but
takes small values of the order of 10−7–10−8. It turns out
that the scattering of quasi-collinear phonons makes a finite
contribution to ultrasound absorption over a wide interval of
the angles θ1 and ϕ1. Calculations which take into account
small, but finite, damping of phonon states, give much larger
values of the absorption than those obtained by numerical
integration (25) using the root calculation procedure. However,
if the contribution of almost collinear phonons, which is found
from the condition 1–10−4 � | cos θ12| � 1, is subtracted,
results of both calculation methods agree to within 3%–5%.
In what follows we shall discuss the role of the interaction
between collinear, quasi-collinear and noncollinear phonons
in the ultrasound absorption as applied to each of the crystals
studied.

3. Results of the numerical analysis

From formulae (8), (9) and (18)–(28) it is possible to calculate
the absorption AFTT(θ1, ϕ1) characterizing the dependence
of the ultrasound absorption on the direction of the sound
wavevector for the TTT mechanisms. We shall compare the
contributions from the FFF and FSS mechanisms and the
contribution from the Landau–Rumer mechanism [1], and find
the full absorption of quasi-transverse ultrasound of the FT
mode:

αFT(z1, T, θ1, ϕ1) = αFFF + αFSS + αFLL

= AFT(θ1, ϕ1)z1T 5(dB cm−1). (29)

AFT(θ1, ϕ1) = AFFF(θ1, ϕ1)+ AFSS(θ1, ϕ1)+ AFLL(θ1, ϕ1)

= A0FT(JFFF(θ1, ϕ1)+ JFSS(θ1, ϕ1))+ A0FLL JFLL(θ1, ϕ1),
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A0FLL = 4.34π3k5
B

15h̄4ρ3(St1(θ1, ϕ1))2〈SL〉8
,

A0FT/A0FLL = 〈SL〉8

(St
100)

8
≈

(
c11

c44

)4

. (30)

The quantity AFT(θ1, ϕ1) characterizes the anisotropy of the
full absorption of the mode t1. The corresponding dependences
are calculated for the two most important cases when the
phonon wavevectors lie in the planes of the cube faces or the
diagonal planes. In this study we are interested in the role
played by the cubic anisotropy and qualitative differences of
the quasi-transverse ultrasound absorption in cubic crystals
and isotropic media. The major distinction is the possibility
of interaction between noncollinear phonons, leading to finite
values of the absorption in the absence of the damping of
phonon states. It has already been noted that in this case
the absorption is zero in isotropic media. This problem is of
major significance for understanding the physical processes
that determine the phonon transport and the ultrasound
absorption in a great variety of cubic crystals. However, in
experimental conditions we always deal with damping states
of thermal phonons. For this reason, in what follows we
present results of the calculations, which were performed
using the root computation procedure and considering a small
(εL = 10−6, for calculation with the Lorentz approximation
of the δ-function corresponding to εG = 10−12 in the
case of the Gaussian approximation) damping of phonon
states in accordance with the formulae (19)–(21) and (22)–
(28). The calculations are made using experimental values of
thermodynamic elastic moduli of the second cik and the third
ci jk order adopted from [4, 31] (see table 1).

Analyzing the calculation results we shall note, in the
first place, the characteristic points that determine specific
features of the absorption of quasi-transverse modes in cubic
crystals with positive and negative anisotropies of the second-
order elastic moduli. The spectrum anisotropy for the fast
mode t1 is smaller than for the slow mode t2 in crystals of
the first group (Ge, Si, diamond and InSb). For example,
in the case of the wavevectors of phonons in planes of the
cube faces the fast mode is a purely transverse isotropic mode
with the polarization vector perpendicular to the cube face at
hand, whereas the mode t2 is a quasi-transverse mode with
the polarization vector in the cube face at hand (see [16],
figure 1). Therefore relaxation mechanisms involving three
transverse phonons in crystals of the first group play a greater
role in the absorption of slow quasi-transverse modes than in
the absorption of fast ones. In crystals of the first group the
largest contribution to the absorption of fast quasi-transverse
modes is due to the FSS relaxation mechanism, while the
SSS relaxation mechanism dominates in the absorption of slow
quasi-transverse modes [2]. The total contribution of the SSS
and SFF relaxation mechanisms to the absorption of the slow
mode in all crystals of the first group, except diamond, is a
few times or one to two orders of magnitude larger than the
contribution from the Landau–Rumer mechanism, depending
on the direction (see [2], figures 3–5). On the other hand,
the Landau–Rumer relaxation mechanism plays a considerable
role in the absorption of fast quasi-transverse modes in Ge,

Table 1. Thermodynamic elasticity moduli for the cubic crystals
under study, in 1012 dyn cm−2. The data are taken from [4, 31].

Ge Si Diamond InSb KCl CaF2

c11 1.289 1.657 10.76 0.672 0.398 1.644
c12 0.483 0.638 1.25 0.367 0.062 0.502
c44 0.671 0.796 5.758 0.302 0.0625 0.347
�C 0.54 0.57 2.01 0.3 −0.211 −0.448
k − 1 0.87 0.67 0.4 0.81 −0.63 −0.35
c111 −7.10 −8.25 −62.6 −3.56 −7.01 −12.46
c112 −3.89 −4.51 −22.6 −2.66 −0.571 −4.04
c123 −0.18 −0.64 1.12 −1.0 0.284 −2.54
c144 −0.23 0.12 −6.74 0.16 0.127 −1.24
c155 −2.92 −3.10 −28.6 −1.39 −0.245 −2.14
c456 −0.53 −0.64 −8.23 −0.004 0.118 −0.748
c̃155 −1.63 −1.9 −5.4 −1.54 −0.61 0.596
c̃111 28.01 32.4 138.1 20.96 1.62 −6.71
c̃112 −3.25 −4.1 −10.24 −1.98 −1.11 1.02

Si and diamond crystals (see tables 2 and 3). In crystals
of the second group (KCl and CaF2) the spectral anisotropy
for the fast mode t1 is larger than for the slow mode t2.
In the case of the wavevectors of phonons in planes of the
cube faces the fast mode is a quasi-transverse mode with the
polarization vector in a cube face, whereas the slow mode is a
pure isotropic mode with the polarization vector perpendicular
to a cube face (see [16], figure 1). Therefore the dominant
contribution to the absorption of fast quasi-transverse modes is
due to the FFF relaxation mechanism. The total contribution
from the FFF and FSS relaxation mechanisms is much larger
than the contribution from the Landau–Rumer mechanism and
determines to a large extent the full absorption of fast quasi-
transverse modes in KCl and CaF2 crystals (see tables 2 and 3).

It should be noted that the elastic energy anisotropy
determines the sound absorption efficiency of the FFF and
FSS relaxation mechanisms. Firstly, it ensures the fulfilment
of the energy conservation law when noncollinear phonons
are scattered via the FFF and FSS relaxation mechanisms.
Secondly, over the interval of the angles θ1 and ϕ1, at
which the equation (24) possesses solutions corresponding
to the scattering of noncollinear phonons, it provides for
the dominance of the FFF and FSS relaxation mechanisms
over the Landau–Rumer mechanism. The dominance of the
FFF and FSS relaxation mechanisms over the Landau–Rumer
mechanism is due in large measure to the second-order elastic
moduli. As is clear from (30), the ratio of A0FT and A0FTL

in the TTT and Landau–Rumer relaxation mechanisms is
proportional to (c11/c44)

4, which is much larger than unity.
This ratio is 26, 32, 16 and 48 for the crystals of the first
group (Ge, Si, diamond and InSb, respectively). Notice that
the coefficient A0FT is 715 and 324 times higher than A0FTL

in the ionic KCl and CaF2 crystals, respectively. Such a large
excess of A0FT over A0FTL, which characterizes the absorption
via the Landau–Rumer mechanism, in the KCl and CaF2

crystals is due to anomalously small values of the second-
order elastic moduli cik determining the propagation rate of
transverse phonons (see table 1).

Let us consider in more detail the absorption anisotropy
for the fast quasi-transverse mode t1 when sound wavevectors
are in the plane of a cube face (ϕ1 = 0) (see figures 3 and 4).
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Figure 4. Angular dependences of the absorption of the fast quasi-transverse mode in the KCl (a) and CaF2 (b) crystals with the wavevector in
the cube face plane (ϕ1 = 0): the FFF relaxation mechanism (curve 1), the FSS relaxation mechanism (curve 2), the Landau–Rumer
mechanism (curve 3), and full quasi-transverse ultrasound absorption (curve 4).

Table 2. Parameters determining quasi-transverse ultrasound absorption for FFF and FSS relaxation mechanisms in the crystals under study.

AFFF(θ1, ϕ1)× 105 (db cm−1 K−5) AFSS(θ1, ϕ1)× 105 (db cm−1 K−5)

A0FT × 105

(db K−5 cm3 dyn−2) [100] [101] [111] [001] [101] [111]

Ge 7.59 7.1 × 10−4 0.11 1.23 2.74 0 0.64
Si 0.62 7.5 × 10−5 0.013 0.12 0.3 0 6.11 × 10−2

Diamond 7.1 × 10−5 4 × 10−7 0 3.5 × 10−4 1.4 × 10−5 0 2.2 × 10−4

InSb 480.6 0.03 19.4 59.32 92.12 0 13.74
KCl 1.5 × 105 24.28 415.2 522.78 43.197 1 × 10−3 581.61
CaF2 73.2 2.14 0.083 0.14 0.0018 0 3.58 × 10−2

It is seen from these figures that the angular dependences
of the absorption of the fast quasi-transverse mode and the
contributions from the FFF and FSS relaxation mechanisms
are qualitatively different in cubic crystals of the first (�C >

0, Ge, Si, diamond and InSb) and second (KCl and CaF2)
types. In the case under consideration (ϕ1 = 0) the angular
dependences of the absorptions αFFF(θ1, 0), αFSS(θ1, 0) and
αFT(θ1, 0) are qualitatively similar in crystals of the first
type (Ge, Si and InSb) (see figures 3). However, the ratios
of the contributions from the FFF, FSS and Landau–Rumer
relaxation mechanisms are considerably different (see tables 2
and 3). In directions like [001] and directions close to them
(at π/2n − 0.17 < θ1 < π/2n + 0.17) the FSS relaxation
mechanism dominates in Ge, Si and InSb crystals, while the
absorptions αFT(θ1, 0) and αFSS(θ1, 0) have similar values (see
figures 3(a)–(c), curves 1 and 4). The contribution of the FFF
relaxation mechanism is small in Ge and Si crystals, while the
Landau–Rumer mechanism dominates over a wide interval of
the angles (0.17 < θ1 < 1.4 in Ge and 0.16 < θ1 < 1.41 in Si)
and determines to a large extent the ultrasound absorption (see
figures 3(a) and (b), curves 1, 3 and 4). On the other hand,
in InSb the contribution of the Landau–Rumer mechanism
to the full absorption is small at all angles θ1 and the full
absorption is determined mainly by the total contribution of

Table 3. Parameters determining quasi-transverse ultrasound
absorption for Landau–Rumer relaxation mechanism in the crystals
under study.

AFLL(θ1, ϕ1)× 105 (db cm−1 K−5)

A00FLL × 105

(db K−5 cm3 dyn−2) [100] [101] [111]

Ge 0.29 1.06 0.68 0.32
Si 0.019 0.05 0.04 0.023
Diamond 4.4 × 10−6 0.001 94 0.001 53 6.15 × 10−4

InSb 9.91 4.41 3.93 1.76
KCl 210 1.53 156.71 136.7
CaF2 0.23 0.33 0.114 0.2

the FFF and FSS relaxation mechanisms. The dominant
contribution to the full ultrasound absorption is made by the
FSS relaxation mechanism in directions close to [001] and
the FFF mechanism in directions close to [101]. In [001]
directions the absorptions αFT(θ1, 0) and αFSS(θ1, 0) have a
local minimum and reach the maximum values at the angles
θ1 = π/2n ± 0.13, θ1 = π/2n ± 0.09 and θ1 = π/2n ± 0.06
in Ge, Si and InSb crystals, respectively. In the case
of the FSS relaxation mechanism the energy conservation
law allows the interaction of both collinear and noncollinear
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Figure 5. Angular dependences of the absorption of the fast quasi-transverse mode in the Ge (a), Si (b), InSb (c) and diamond (d) crystals
with the wavevector in the diagonal plane (ϕ1 = π/4): the FFF relaxation mechanism (curve 1), the FSS relaxation mechanism (curve 2), the
Landau–Rumer mechanism (curve 3), and full quasi-transverse ultrasound absorption (curve 4).

phonons in directions like [001] (see figure 2(a)). However,
the contribution to the absorption αFSS(0, 0) is determined by
the interaction of noncollinear phonons. It is 3, 6 and 21 times
larger than the contribution of the Landau–Rumer mechanism
in Ge, Si and InSb crystals, respectively. At the angles
π/2n + 0.4 < θ1 < π/2(n + 1) − 0.4 in Ge, π/2n + 0.3 <
θ1 < π/2(n + 1)− 0.3 in Si and π/2n + 0.6 < θ1 < π/2(n +
1) − 0.6 in InSb equation (24) does not possess solutions
corresponding to the interaction of noncollinear phonons in
the FSS mechanism and the absorption αFSS(θ1, 0) turns to
zero. The solution to equation (24) suggests that in directions
like [001] the FFF relaxation mechanism can involve collinear
phonons only (θ12 = 0). In this case the square of the
matrix element (8) identically turns to zero. Therefore, if
the energy conservation law is fulfilled exactly, the absorption
of the fast quasi-transverse mode αFFF(0, 0) becomes zero.
However, taking into account the small damping (εL = 10−6)

leads to a negligibly small, but finite value of the absorption
αFFF(0, 0). In the case of the FFF relaxation mechanism
the absorptions αFFF(θ1, 0) are a maximum in directions like
[101]. In this direction the energy conservation law allows the
interaction of both collinear and noncollinear phonons. The
region of existence of the roots corresponding to the interaction
of noncollinear phonons is much larger in InSb than in Ge
and Si (see figure 2(b), curves 1, 2 and 3). For this reason
the FFF mechanism is significant for InSb crystals, but makes
a small contribution in Ge and Si crystals. The absorption
αFFF(π/4, 0) is 6 and 3 times smaller than the contribution
from the Landau–Rumer mechanism in Ge and Si, respectively,
whereas in InSb crystals αFFF(π/4, 0) is 5 times larger than
αFLL(π/4, 0). Thus, with the domination of anharmonic
processes of the scattering, taking into account one of the FFF,
FSS and Landau–Rumer relaxation processes is insufficient
for the quantitative description of the absorption anisotropy in
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Ge, Si and InSb crystals. For example, the contributions of
the FFF, FSS and Landau–Rumer relaxation mechanisms to
the full absorption in directions like [001] in crystals of the
first type are 0.2%, 72% and 27.8% in Ge, 0.01%, 85.79%
and 14.2% in Si, and 0.03%, 95.4% and 4.57% in InSb,
respectively. In directions like [101] they are 14%, 0% and
86% in Ge, 20%, 0% and 80% in Si and 83.3%, 0% and 16.7%
in InSb, respectively. The ultrasound absorption anisotropy is
characterized by the ratio of αFT(0, 0) and αFT(π/4, 0). This
ratio equals 5, 7 and 4 in Ge, Si and InSb, respectively, and
differs considerably from the corresponding ratios in the case
of the Landau–Rumer mechanism (see tables 3 and 4). Thus,
the FFF and FSS relaxation mechanisms are important for the
crystals of the first type under study: they determine to a
large degree the anisotropy of the full absorption of the fast
transverse mode.

The cubic anisotropy parameter k − 1 is much smaller in
diamond than it is in Ge and InSb crystals and, hence, the TTT
relaxation mechanisms are less significant for diamond (see
table 1). The full absorption αFT(θ1, 0) is determined to a large
extent by the Landau–Rumer mechanism (see figure 3(d)).
The solution to equation (24) for sound wavevectors lying
in the cube face plane (ϕ1 = 0) suggests that the FFF and
FSS relaxation mechanisms can only involve collinear phonons
(θ12 = 0). Therefore, if the energy conservation law is
fulfilled exactly, the absorptions αFFF(0, 0) and αFSS(0, 0) turn
to zero. However, the consideration of the small damping
leads to negligibly small, but finite, values of these quantities
because of the small-angle scattering. For example, in the
[001] directions at ε = 10−6 the contribution of the Landau–
Rumer mechanism to the full absorption is two orders of
magnitude larger than the total contribution from the SSS and
SFF relaxation mechanisms. So the full absorption αFT(θ1, 0)
is determined by the Landau–Rumer mechanism.

In KCl and CaF2 cubic crystals with a negative anisotropy
of the second-order elastic moduli the ratio of the contributions
from the FFF and FSS relaxation mechanisms to the ultrasound
absorption is considerably different from the corresponding
ratio in crystals of the first group (see figures 3 and 4). In
the latter crystals the absorptions αFFF(θ1, 0) and αFSS(θ1, 0)
are due to the interaction of noncollinear phonons and the
FFF mechanism makes the dominant contribution to the full
absorption αFT(θ1, 0) over a wide interval of the angles θ1.
As indicated above, this is due to the fact that in crystals
of the second group the anisotropy of the fast mode is
much larger than the anisotropy of the slow mode (see [16],
figure 1). Therefore the function �t1t1(θ1, ϕ1, θ2, ϕ2), which
is proportional to angular derivatives of the sound phase
velocity, takes larger values than for the t2 mode. In this
case the interval of angles at which noncollinear phonons can
interact is considerably extended. KCl crystals are the most
anisotropic among crystals of the second group. The FFF
relaxation mechanism determines to a large degree the full
absorption of the fast mode in KCl: the curves 1 and 4 in
figure 4(a) are similar over a wide interval of angles θ1. It
is only in the vicinity of directions like [001] that the FSS
relaxation mechanism makes an appreciable contribution to the
full absorption. In this case the absorption αFSS(0, 0) is almost

Table 4. Parameters determining full quasi-transverse ultrasound
absorption in the crystals under study.

AFT(θ1, ϕ1)× 105 (db cm−1 K−5)

[100] [101] [111] A0FT/A0FLL

Ge 3.81 0.78 2.19 26
Si 0.36 0.05 0.204 32
Diamond 0.001 95 0.001 53 11.9 × 10−4 16
InSb 96.56 23.3 74.82 48
KCl 69.01 571.9 1241.1 715
CaF2 2.47 0.197 0.37 324

twice as large as αFFF(0, 0) and more than 30 times larger
than the contribution from the Landau–Rumer mechanism
αFLL(0, 0) (see figure 4(a), curves 1, 2 and 3). In KCl the
full absorption αFT(θ1, 0) is a maximum at the angles θ1

∼=
nπ/2 ± 0.55 and θ1

∼= nπ/2 ± 1.02 (n = 0, 1, 2, etc),
and a minimum in directions like [001]. A local minimum
is realized in [101] directions (θ1 = π/4) (see figure 4(a),
curves 4). The contributions from the FFF, FSS and Landau–
Rumer relaxation mechanisms to the full ultrasound absorption
equal 35.2%, 62.6% and 2.2% in directions like [001] and
72.6%, 0% and 27.4% in directions like [101] (see tables 2–
4). Thus, the Landau–Rumer mechanism makes a relatively
small contribution to the absorption of the fast quasi-transverse
mode.

In contrast to KCl, in CaF2 crystals the Landau–Rumer
mechanism is more significant for the ultrasound absorption.
The point is that the elastic energy anisotropy in CaF2 is
much smaller than in KCl: the cubic anisotropy parameter
|k − 1| is twice as low as in KCl (see table 1). Although
the contribution of the Landau–Rumer mechanism to the
absorption in [001] directions is one order of magnitude
smaller than the contribution of the FFF mechanism, in
directions like [101] the absorption αFLL(π/4, 0) is 1.4 times
higher than αFFF(π/4, 0). The contribution of the FSS
relaxation mechanism to the full absorption is negligibly small
in CaF2 crystals. In directions like [001], collinear phonons
(θ12 = 0) can only participate in this mechanism. Therefore, if
the energy conservation law is fulfilled exactly, the absorption
αFSS(0, 0) becomes zero in CaF2 crystals. However, if the
small damping is taken into account, it becomes nonzero
due to the small-angle scattering. At εL = 10−6 the
absorption αFSS(0, 0) is two orders of magnitude lower than
the contribution of the Landau–Rumer mechanism αFLL(0, 0)
(see figure 4(b), curves 2 and 3). The contributions of the
FFF, FSS and Landau–Rumer relaxation mechanisms to the
full absorption equal 86.6%, 0.1% and 13.3%, respectively, in
directions like [001] and 42.1%, 0% and 57.9%, respectively,
in directions like [101]. In CaF2 crystals the full absorption
αFT(θ1, 0) is a maximum at the angles θ1

∼= nπ/2 ± 0.57
and θ1

∼= nπ/2 ± 1.01 (n = 0, 1, 2, etc) and a minimum
in directions like [101] (see figure 4(b), curve 4). A local
maximum is realized in [001] directions. It should be noted that
the anisotropy of the full absorption αFT(θ1, 0) is considerably
different from the ultrasound absorption anisotropy in the
Landau–Rumer mechanism. For example, the ratio of
αFT(π/4, 0) and αFT(0, 0) is 8 and 0.1 for KCl and CaF2,
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respectively. In the case of the Landau–Rumer mechanism the
ratio of αFLL(π/4, 0) and αFLL(0, 0) is 102 and 0.35 for KCl
and CaF2, respectively (see table 3).

The angular dependences of the absorptions αFFF(θ1, π/4),
αFSS(θ1, π/4) and αFT(θ1, π/4) in the crystals of the first and
second types are more complicated for sound wavevectors
lying in the diagonal plane (ϕ1 = π/4). This is due to
both the presence of the intersection point of the spectra of
quasi-transverse modes and the behavior of the polarization
vectors of the fast mode [16]. As mentioned above, in crystals
of the first type the fast mode t1 is a pure mode with the
polarization vector perpendicular to the diagonal plane at the
angles 0 < θ1 < θ111 and π − θ111 < θ1 < π , while it is
a quasi-transverse mode with the polarization vector lying in
the diagonal plane at the angles θ111 < θ1 < π − θ111. In the
crystals of the second type these intervals of the angles change
places (for details see [16]). In this connection, the angular
dependences of the absorptions αFFF(θ1, π/4), αFSS(θ1, π/4)
and αFT(θ1, π/4) in directions like [111] exhibit singularities:
sharp local maxima are observed in the all crystals of the first
type (Ge, Si, diamond and InSb) and the second type (KCl and
CaF2).

As with (ϕ1 = 0), in this case (ϕ1 = π/4) the angular
dependences of the absorptions αFFF(θ1, π/4), αFSS(θ1, π/4)
and αFT(θ1, π/4) are qualitatively similar. However, the ratio
of the contributions from the FFF, FSS and Landau–Rumer
relaxation mechanisms to the full absorption in Ge and Si
crystals is considerably different from the ratio in InSb (see
figures 5(a)–(c)). The FSS mechanism determines to a large
degree the full absorption in directions close to [001] at the
angles −0.5 < θ1 < 0.5 and −0.42 < θ1 < 0.42 in Ge
and Si, respectively. In Ge and Si crystals the FFF mechanism
makes the dominant contribution to the full absorption at the
angles 0.5 < θ1 < 0.96 and 0.96 < θ1 < 1.25 in Ge and
0.42 < θ1 < 0.96 and 1.24 < θ1 < π/2 in Si. On the
other hand, in InSb the total contribution of the FFF and FSS
relaxation mechanisms is much larger than the contribution
of the Landau–Rumer mechanism to the full absorption over
the whole interval of the angles θ1. In this crystal the full
absorption is determined by the contribution from the FSS
relaxation mechanism at the angles 0 < θ1 < π/4 and the FFF
mechanism at the angles π/4 < θ1 < π/2. Local minima of
the full absorption αFT(θ1, π/4) are realized in [001] directions
in Ge, Si and InSb. Maximum values of αFT(θ1, π/4) are due
to the FSS relaxation mechanism and are achieved at angles
close to directions like [001]: θ1max = 0.07, 0.05 and 0.09 in
Ge, Si and InSb, respectively. These values are 1.7, 1.6 and 1.9
times larger than αFT(0, π/4) in Ge, Si and InSb, respectively.
The absorption αFT(θ1, π/4) is a minimum at θ1

∼= 0.9 in Ge
and Si crystals and θ1 = π/2 in InSb. The contributions from
the FFF, FSS and Landau–Rumer relaxation mechanisms to
the full absorption in directions like [111] in crystals of the
first type are 56.2%, 29.2% and 14.6% in Ge, 58.8%, 30%
and 11.2% in Si and 79.3%, 18.4% and 2.3% in InSb. Thus,
the quantitative description of the absorption anisotropy of fast
quasi-transverse modes in Ge, Si and InSb crystals should take
into account both the FFF and FSS relaxation mechanisms and
the Landau–Rumer mechanism.

Analyzing the absorption of fast quasi-transverse modes
in the FFF mechanism, we detected an interesting new feature
of Ge, Si, diamond and InSb crystals. The calculation of
the absorption αFFF(θ1, π/4) for these crystals taking into
account the small damping of the phonon states (εL = 10−6)
in accordance with the formulae (18)–(21) and (28) gives
much larger absorption values than those obtained by the
numerical integration using the root calculation procedure (see
figures 5(d) and 6, curves 1 and 2). This feature appears
because the spectral anisotropy of the fast quasi-transverse
modes is insufficient for equation (24) to possess a solution.
Therefore, when quasi-collinear phonons are scattered in Ge,
Si, diamond and InSb crystals, the function Ft1 t1(θ1, ϕ1, x, ϕ2)

does not turn to zero over the interval of angles 1 − 10−4 �
|cos θ12| � 1. However, over a narrow interval of the
angles θ2 and ϕ2 approaching θ1 and ϕ1 it takes small values
(about 10−7–10−8). In this case the scattering of quasi-
collinear phonons makes a finite contribution to the ultrasound
absorption in directions close to [111] in diamond crystals
and over a sufficiently wide interval of the angles θ1 in
Ge, Si and InSb. Let us dwell in more detail on diamond
crystals, where the elastic energy anisotropy is much smaller
than it is in Ge, Si and InSb crystals. It follows from the
analysis of equation (24) that the FFF and FSS relaxation
mechanisms can involve collinear phonons (θ12 = 0) only.
Therefore, if the energy conservation law is fulfilled exactly,
the absorptions αFFF(θ1, π/4) and αFSS(θ1, π/4) become zero
at all angles θ1. Taking into account the small damping leads
to negligibly small, but finite, values of these absorptions on
account of the small-angle scattering. This case is realized
in [001] and similar directions. The total contribution of the
FFF and FSS relaxation mechanisms to the full absorption is
small and can be neglected: it is two orders of magnitude
smaller than the contribution of the Landau–Rumer mechanism
at εL = 10−6. However, in diamond the absorptions
αFFF(θ1, π/4) and αFSS(θ1, π/4) in directions close to [111]
have specific features related to the scattering of quasi-
collinear phonons. As a result, in directions close to [111]
the angular dependences of αFFF(θ1, π/4) and αFSS(θ1, π/4)
exhibit peaks comparable in value with the contribution from
the Landau–Rumer mechanism (see figure 5(d), curves 1 and
2). Thus, the Landau–Rumer mechanism makes the dominant
contribution to the ultrasound absorption in diamond crystals,
while it is only in directions close to [111] that the features
related to the scattering of quasi-collinear phonons appear in
the dependence of the full absorption.

The scattering of quasi-collinear phonons makes a more
substantial contribution to the full absorption in Ge, Si and
InSb crystals than in diamond (see figures 6(a)–(c), curves 1
and 2). It is seen from figure 6 that the scattering leads to
finite values of the absorption αFFF(θ1, π/4) over the interval
of the angles θ1 at which the roots corresponding to the
interaction of noncollinear phonons are unavailable. In Ge,
Si and InSb crystals the FFF mechanism involving quasi-
collinear phonons makes the dominant contribution to the full
absorption αFT(θ1, π/4) at the angles 0.96 < θ1 < 1.25. It
determines the appearance of local maxima in αFT(θ1, π/4)
curves at θ1

∼= π/3 (see figures 5(a)–(c), curves 1 and 4). The
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Figure 6. Angular dependences of the absorption of the fast quasi-transverse mode for the FFF relaxation mechanism in Ge (a), Si (b) and
InSb (c) crystals with the wavevector in the diagonal plane (ϕ1 = π/4): curves 1, the calculations of the absorption taking into account the
small damping of the phonon states (εL = 10−6); curves 2, the calculations obtained by the numerical integration using the root calculation
procedure in accordance with the formulae (18)–(21) and (24)–(28).

analysis demonstrates that results of the numerical integration
with the root calculation procedure agree to within 3% with
the calculated absorption αFFF(θ1, π/4) in Ge, Si and InSb
crystals taking into account the damping of phonon states
after subtraction of the contribution of quasi-collinear phonons
determined from the condition 1−10−4 � |cos θ12| � 1. Thus,
taking into account the damping of phonon states in relaxation
mechanisms involving three transverse phonons can lead to
appearance of additional features of the ultrasound absorption.

In KCl and CaF2 crystals the absorption anisotropy for
the wavevectors in the diagonal plane (ϕ1 = π/4) is much
larger than for the wavevectors in the plane of a cube face (see
figures 7, curves 4). The ratios of the contributions from the
FFF, FSS and Landau–Rumer relaxation mechanisms in these
crystals are considerably different. In KCl crystals the total
contribution of the FFF and FSS relaxation mechanisms to
the full absorption is much larger than the contribution of the
Landau–Rumer mechanism. The FFF mechanism dominates
over a wide interval of angles θ1. The FSS relaxation
mechanism dominates only in directions close to [001]: the

absorption αFSS(0, π/4) is 1.8 times higher than αFFF(0, π/4)
(see figures 7, curves 1 and 2). Contrastingly, in CaF2 crystals
the contribution of the FSS relaxation is small compared to
the contributions from the FFF and Landau–Rumer relaxation
mechanisms. The FFF mechanism dominates at angles 0.7 <
θ1 < −0.7 and the Landau–Rumer mechanism at angles 0.7 <
θ1 < 2.27. In KCl crystals the absolute maximum of the full
absorption αFT(θ1, π/4) is due to the FFF and FSS relaxation
mechanisms and is realized at θ1

∼= 0.95. In CaF2 crystals they
are due to the FFF relaxation mechanisms and are realized in
the [001] directions. The full absorption reaches its minimum
values in directions like [001] in KCl and at θ1

∼= 1.16 in
CaF2. The minimum values are determined by the FFF and
FSS relaxation mechanisms in KCl crystals and the Landau–
Rumer mechanism in CaF2 crystals. The maximum values
are 18.4 and 15 times larger than the minimum ultrasound
absorptions in KCl and CaF2, respectively. The contributions
of the FFF, FSS and Landau–Rumer relaxation mechanisms to
the full absorption in directions like [111] are 42.1%, 46.9%
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Figure 7. Angular dependences of the absorption of the fast quasi-transverse mode in the KCl (a) and CaF2 (b) crystals with the wavevector in
the diagonal plane (ϕ1 = π/4): the FFF relaxation mechanism (curve 1), the FSS relaxation mechanism (curve 2), the Landau–Rumer
mechanism (curve 3), and full quasi-transverse ultrasound absorption (curve 4).

and 11% in KCl crystals and 37.8%, 9.6% and 52.6% in CaF2

crystals.
Thus, the absorption coefficients change over sufficiently

wide limits in the crystals under study. The absorption is
a maximum in the KCl crystal among those studied: the
coefficient AFT(θ1, π/4) is as high as 1272 (dB cm−1 K−5)
at the angle θ1

∼= 0.95. The absorptions are a
minimum in the diamond crystals: coefficient AFT(θ1, 0) =
0.000 67 (dB cm−1K−5) at the angle θ1

∼= 0.92.

4. Conclusion

The absorption of quasi-transverse ultrasound during anhar-
monic scattering processes in cubic crystals with a positive
(Ge, Si, diamond and InSb) or a negative (KCl and CaF2)
anisotropy of the second-order elastic moduli was studied. The
absorption of the fast quasi-transverse modes via the FFF, FSS
and Landau–Rumer relaxation mechanisms was discussed.
The angular dependences of the absorptions of the fast quasi-
transverse modes for the FFF and FSS relaxation mechanisms
were analyzed in the context of the anisotropic continuum
model and the full absorptions were determined. Two most
important cases were considered: when the wavevectors of
phonons are in the planes of the cube faces or in the diagonal
planes. The main results of the study can be formulated as
follows:

(1) The absorption of quasi-transverse ultrasound in cubic
crystals is calculated for the FFF and FSS relaxation
mechanisms in a long-wavelength approximation. It is
shown that in crystals with a considerable anisotropy of
the elastic energy (InSb and KCl) the total contribution
from the FFF and FSS relaxation mechanisms to the
ultrasound absorption is one to two orders of magnitude
larger than the contribution from the Landau–Rumer
mechanism depending on the direction. The dominance

of the FFF and FSS relaxation mechanisms over the
Landau–Rumer mechanism is explained, to a large extent,
by the second-order elastic moduli. The role of the
Landau–Rumer mechanism in the ultrasound absorption
is considerable in cubic crystals with a smaller anisotropy
of the elastic energy.

(2) It is shown that the FFF and FSS relaxation mechanisms
are due to the cubic anisotropy of the crystals leading
to the interaction of noncollinear phonons. With the
anharmonic scattering processes playing the dominant
role, the consideration of one of the relaxation
mechanisms—the Landau–Rumer mechanism or the FFF
or FSS mechanism—is insufficient for the quantitative
description of the anisotropy of full ultrasound absorption
in cubic crystals.

(3) The full absorption of fast quasi-transverse modes is
determined. It is shown that other variants of the
FT mode relaxation, except the ones considered above,
leading to the dependence of the Landau–Rumer type are
unavailable.

(4) The analysis of three-phonon scattering processes via the
FFF and FSS relaxation mechanisms in cubic crystals
demonstrated that the square of the matrix element turns
to zero during the scattering of collinear phonons when the
fast FT mode is a purely transverse mode and is nonzero
when the fast FT mode is quasi-transverse. The behavior
of the square of the matrix element during the scattering
of collinear phonons is qualitatively different in crystals
of the first and second groups.

(5) It is found that the presence of intersection points of the
spectra of quasi-transverse modes and a sharp change of
the polarization vectors near the [111] directions give rise
to sharp local maxima in the absorptions of fast quasi-
transverse modes in the vicinity of these directions.
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(6) New features of ultrasound absorption in the FFF
mechanism, which arise from the scattering of quasi-
collinear phonons, have been detected in Ge, Si, diamond
and InSb crystals. In diamond crystals the scattering of
quasi-collinear phonons leads to appearance of peaks in
the absorption curve in directions close to [111]. The
values of these peaks are comparable with the contribution
from the Landau–Rumer mechanism. In Ge, Si and InSb
crystals this mechanism makes the dominant contribution
to the full absorption αFT(θ1, π/4) over a sufficiently wide
interval of the angles θ1 and determines the appearance of
local maxima in the αFT(θ1, π/4) curves.
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